当前位置:首页 > 实用范文

平面向量的数量积及运算律(多篇)

时间:2025-02-07 08:53:59
平面向量的数量积及运算律(多篇)

[概述]平面向量的数量积及运算律(多篇)为网友投稿推荐,但愿对你的学习工作带来帮助。

平面向量的数量积及运算律 篇一

教学目的:

1 掌握平面向量的数量积及其几何意义;

2 掌握平面向量数量积的重要性质及运算律;

3 了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4 掌握向量垂直的条件

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

授课类型:新授课

课时安排:1课时

教    具:多媒体、实物投影仪

内容分析:

本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识 主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律

教学过程:

一、复习引入:

1. 向量共线定理  向量 与非零向量 共线的充要条件是:有且只有一个非零实数λ,使 =λ

2.平面向量基本定理:如果 , 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数λ1,λ2使 =λ1 +λ2

3.平面向量的坐标表示

分别取与 轴、轴方向相同的两个单位向量 、作为基底 任作一个向量 ,由平面向量基本定理知,有且只有一对实数 、,使得

把 叫做向量 的(直角)坐标,记作

4.平面向量的坐标运算

若 , ,

则  ,  ,

若 , ,则

5. ∥  (  )的充要条件是x1y2-x2y1=0

6.线段的定比分点及λ

p1, p2是直线l上的两点,p是l上不同于p1, p2的任一点,存在实数λ,

使  =λ ,λ叫做点p分 所成的比,有三种情况:

λ>0(内分)      (外分) λ<0 (λ

7 定比分点坐标公式:

若点p1(x1,y1) ,p2(x2,y2),λ为实数,且 =λ ,则点p的坐标为( ),我们称λ为点p分 所成的比

8 点p的位置与λ的范围的关系:

①当λ>0时, 与 同向共线,这时称点p为 的内分点

②当λ<0( )时, 与 反向共线,这时称点p为 的外分点

9 线段定比分点坐标公式的向量形式:

在平面内任取一点o,设 = , = ,

可得 =

10.力做的功:w = | || |cos,是 与 的夹角

二、讲解新课:

1.两个非零向量夹角的概念

已知非零向量 与 ,作 = , = ,则∠aob=θ(0≤θ≤π)叫 与 的夹角

说明:(1)当θ=0时, 与 同向;

(2)当θ=π时, 与 反向;

(3)当θ= 时, 与 垂直,记 ⊥ ;

(4)注意在两向量的夹角定义,两向量必须是同起点的 范围0≤≤180

2.平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量| || |cos叫 与 的数量积,记作  ,即有   = | || |cos,

(0≤θ≤π) 并规定 与任何向量的数量积为0

探究:两个向量的数量积与向量同实数积有很大区别

(1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定

(2)两个向量的数量积称为内积,写成  ;今后要学到两个向量的外积 × ,而  是两个向量的数量的积,书写时要严格区分 符号“• ”在向量运算中不是乘号,既不能省略,也不能用“×”代替

(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若  ,且  =0,不能推出 =  因为其中cos有可能为0

(4)已知实数a、b、c(b0),则ab=bc  a=c

但是   =       =

如右图:   = | || |cos = | ||oa|,  = | || |cos = | ||oa|

    =     但  

(5)在实数中,有(aa)c = a(ac),但是(  )    (  )

显然,这是因为左端是与 共线的向量,而右端是与 共线的向量,而一般 与 不共线

3.“投影”的概念:作图

定义:| |cos叫做向量 在 方向上的投影

投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 | |;当 = 180时投影为 | |

4.向量的数量积的几何意义:

数量积  等于 的长度与 在 方向上投影| | os的乘积

5.两个向量的数量积的性质:

设 、为两个非零向量, 是与 同向的单位向量

1    =    =| |cos

2        = 0

3 当 与 同向时,   = | || |;当 与 反向时,   = | || |

特别的   = | |2或

4  os =

5|  | ≤ | || |

三、讲解范例:

例1 判断正误,并简要说明理由

① • = ;②0• =0;③ - = ;④| • |=| || |;⑤若 ≠ ,则对任一非零 有 • ≠0;⑥ • =0,则 与 中至少有一个为 ;⑦对任意向量 , , 都有( • ) = ( • );⑧ 与 是两个单位向量,则 2= 2

解:上述8个命题中只有③⑧正确;

对于①:两个向量的数量积是一个实数,应有 • =0;

对于②:应有0• = ;

对于④:由数量积定义有| • |=| |•| |•|cosθ|≤| || |,这里θ是 与 的夹角,只有θ=0或θ=π时,才有| • |=| |•| |;

对于⑤:若非零向量 、垂直,有 • =0;

对于⑥:由 • =0可知 ⊥ 可以都非零;

对于⑦:若 与 共线,记 =λ

则 • =(λ )• =λ( • )=λ( • ),

∴( • )• =λ( • ) =( • )λ =( • ……此处隐藏1840个字……)= • + • + • + •

( + )2= 2+2 • + 2

三、讲解范例:

例1 已知 、都是非零向量,且  + 3 与7   5 垂直,   4 与7   2 垂直,求 与 的夹角

解:由(  + 3 )(7   5 ) = 0  7 2 + 16   15 2 = 0    ①

(   4 )(7   2 ) = 0  7 2  30   + 8 2 = 0    ②

两式相减:2   =  2

代入①或②得: 2 =  2

设 、的夹角为,则cos =    ∴ = 60

例2 求证:平行四边形两条对角线平方和等于四条边的平方和

解:如图: abcd中, , , =

∴| |2=

而 =

∴| |2=

∴| |2 + | |2 = 2 =

例3 四边形abcd中, = , = , = , = ,且 • = • = • = • ,试问四边形abcd是什么图形?

分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量

解:四边形abcd是矩形,这是因为:

一方面:∵ + + + =0,

∴ + =-( + ),∴( + )2=( + )2

即| |2+2 • +| |2=| |2+2 • +| |2

由于 • = • ,

∴| |2+| |2=| |2+| |2①

同理有| |2+| |2=| |2+| |2②

由①②可得| |=| |,且| |=| |即四边形abcd两组对边分别相等

∴四边形abcd是平行四边形

另一方面,由 • = • ,有 ( - )=0,而由平行四边形abcd可得 =- ,代入上式得 •(2 )=0

即 • =0,∴ ⊥ 也即ab⊥bc

综上所述,四边形abcd是矩形

评述:(1)在四边形中, , , , 是顺次首尾相接向量,则其和向量是零向量,即 + + + = ,应注意这一隐含条件应用;

(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系

四、课堂练习:

1 下列叙述不正确的是(   )

a 向量的数量积满足交换律     b 向量的数量积满足分配律

c 向量的数量积满足结合律     d  • 是一个实数

2 已知| |=6,| |=4, 与 的夹角为60°,则( +2 )•( -3 )等于(    )

a 72           b -72           c 36        d -36

3 | |=3,| |=4,向量 +  与 -  的位置关系为(    )

a平行         b 垂直        c 夹角为   d 不平行也不垂直

4 已知| |=3,| |=4,且 与 的夹角为150°,则( + )2=

5 已知| |=2,| |=5, • =-3,则| + |=______,| - |=

6 设| |=3,| |=5,且 +λ 与 -λ 垂直,则λ=

参考答案:1 c  2 b  3 b  4 2 5 -1+2   5     6 ±

五、小结  通过本节学习,要求大家掌握平面向量数量积的运算规律,掌握两个向量共线、垂直的几何判断,能利用数量积的5个重要性质解决相关问题

六、课后作业

1 已知| |=1,| |= ,且( - )与 垂直,则 与 的夹角是(    )

a 60°         b 30°          c 135°         d 45°

2 已知| |=2,| |=1, 与 之间的夹角为 ,那么向量 = -4 的模为

a 2            b 2           c 6            d 12

3 已知 、是非零向量,则| |=| |是( + )与( - )垂直的(    )

a 充分但不必要条件               b 必要但不充分条件

c 充要条件                          d 既不充分也不必要条件

4 已知向量 、的夹角为 ,| |=2,| |=1,则| + |•| - |=

5 已知 + =2 -8 , - =-8 +16 ,其中 、是直角坐标系中x轴、y轴正方向上的单位向量,那么 • =

6 已知 ⊥ 、与 、的夹角均为60°,且| |=1,| |=2,|  |=3,则( +2 - )2=______

7 已知| |=1,| |= ,(1)若 ∥ ,求 • ;(2)若 、的夹角为60°,求| + |;(3)若 - 与 垂直,求 与 的夹角

8 设 、是两个单位向量,其夹角为60°,求向量 =2 + 与 =2 -3 的夹角 

9 对于两个非零向量 、,求使| +t |最小时的t值,并求此时 与 +t 的夹角

参考答案:1 d  2 b  3 c  4    5  –63   6  11

7 (1)-    (2)   (3)45° 8  120°  9  90°

七、板书设计(略)

八、课后记及备用资料:

1 常用数量积运算公式:在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛

即( + )2= 2+2 • + 2,( - )2= 2-2 • + 2

上述两公式以及( + )( - )= 2- 2这一类似于实数平方差的公式在解题过程中可以直接应用

2 应用举例

例1 已知| |=2,| |=5, • =-3,求| + |,| - |

解:∵| + |2=( + )2= 2+2 • + 2=22+2×(-3)+52=23

∴| + |= ,∵(| - |)2=( - )2= 2-2 • + 2=22-2×(-3)×52=35,

∴| - |= .

例2 已知| |=8,| |=10,| + |=16,求 与 的夹角θ(精确到1°)

解:∵(| + |)2=( + )2= 2+2 • + 2=| |2+2| |•| |cosθ+| |2

∴162=82+2×8×10cosθ+102,

∴cosθ= ,∴θ≈55°

你也可以在搜索更多本站小编为你整理的其他平面向量的数量积及运算律(多篇)范文。

《平面向量的数量积及运算律(多篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式