
[导语]计量经济学的论文【多篇】为网友投稿推荐,但愿对你的学习工作带来帮助。
计量经济学的论文 篇一“计量经济学”作为一门课程,在我国一部分高等院校经济学科、管理学科相关专业中开设已经有二十年的历史,它的重要性也逐渐为人们所认识。克莱因(R·Klein)说:“计量经济学已经在经济学科中居于最重要的地位,在大多数大学和学院中,计量经济学的讲授已经成为经济学课程表中最有权威的一部分”。萨缪尔森(P·Samuelson)认为:“第二次大战后的经济学是计量经济学的时代”。1998年7月,教育部高等学校经济学学科教学指导委员会讨论并确定了高等学校经济学门类各专业的八门共同核心课程,其中包括“计量经济学”。这是我国经济学学科教育走向现代化和科学化的重要标志,必将对我国经济学人才的培养质量产生重要影响。特别是计算机技术的迅速发展和计量软件开发,为计量经济学的应用提供了广阔的空间。应该说,经过多年的努力,在计量经济学课程建设上我们已经取得了不小的成绩。在充分肯定这门课程作用的基础上,认真总结多年的教学实践,我们也感到对于本科计量经济学的教学理念还需要进一步商榷。
目前,我们研究问题的分析方法已经实现了由过去的定性分析到定量分析的转变,特别是计量经济的研究方法已经成为经济学及相关领域的主流方法,这是值得充分肯定的。这也是我们本科计量教学工作者的一大贡献,它彻底扭转了单纯的定性分析理念。然而,令人不安的是在本科计量经济学的教学中出现了两种倾向:其一是把计量经济学当成了“圣经”,唯计量是从,似乎是没有计量参加的学科都是伪科学或者说不够科学,其结果是计量方法的滥用;其二是计量的数学化,也就是数学的计量而不是经济学的计量,其结果是使得计量经济学脱离实际,变成了数学游戏。就上述问题,结合本科计量经济学教学实际谈谈我们的看法。
一、计量经济学不是“圣经”:完美中有折中
首先,计量模型是完美的。我们以一元模型为例:
Y=β0+β1X+μ(1)
其中,μ表示除X以外的所有影响Y的因素,模型(1)叫总体回归模型。该模型描述的变量之间的关系是相关关系,而非函数关系。对同样问题处理的数理模型:
Y=β0+β1X(2)
模型(1)比模型(2)完美,因为模型(1)比模型(2)考虑问题全面。在模型(1)中,每给X一个值,从理论上讲,由于μ的存在,模型考虑了和X对应的所有Y的值;模型(2)仅考虑了因素X对Y的唯一影响,而没有考虑X以外的其他因素对Y的影响,因此,模型(2)仅考虑了和X“对应”的一个Y值,这里对应加引号是因为从理论上讲,那个Y值仅仅是无穷多个Y值中的一个,而未必就是真的和X对应的那个,这就是计量经济学家和数理经济学家的不同之处,所以,我们说计量经济学是完美的(确切的说是计量模型比数理模型完美)。但是,完美的计量模型(总体回归模型)理论上是存在的,实践中是求解不出来的,不是因为我们的计算技术达不到而求解不出来β0,β1,而是由于总体的无限性和μ的复杂性(随机变量),特别是在现实经济问题中,我们面临的问题的总体一般是不知的(总体数据搜集的困难)。因此,计量经济学家就退而求其次优结果━━总体回归直线:
E(Y)=β0+β1X(3)
总体回归直线(3)就是我们常说的函数形式或方程,它是由(1)两边取数学期望而得到(假定E(μ)=0),它揭示了,每给X一个值,有唯一的一个Y的期望值与之对应。这里的分析思路:从模型(1)到模型(3)就由相关关系转化为函数关系,从而计量模型的完美性在这里受到了挑战,这就是我们说的计量模型的第一次打折。那么总体回归直线(3)是否可以顺利的求解呢?在总体数据已知的条件下可以找到。在现实经济问题中,我们面临的问题的总体一般是不知的,因此求解总体回归函数的思路也是行不通的。既然是这样,那就退而求其次优结果(再次打折),计量经济学家自然就想到借助样本来分析问题,建立样本回归模型:
Y=■0+■1X+e(4)
这里,■0,■1是总体回归(1)中β0,β1的近似估计,残差e也是随机干扰项μ的近似估计。那么样本回归模型(4)可以容易求解吗?尽管样本的数据可以很容易的收集,但是由于残差同样存在和随即干扰项的一样困难,使得样本回归模型仅仅是理论上的存在,现实中很难操做。计量经济学家又再次退而求其次优结果,寻找样本回归直线(第三次打折):
■=■0+■1X(5)
这里,方程(5)是由(4)两边取数学期望得到的。参数的估计应用了普通最小二乘法。单就上述分析过程我们不难发现,计量模型是完美的,而模型估计是打折的不完美。
二、计量模型与模型估计一样吗?
计量模型指的是总体回归模型,模型估计是样本回归函数(回归直线)。因此,用计量模型方法分析问题的实质是归结为模型估计,所以,这种方法也是折中(打折)的研究问题。那么这种方法可靠吗?当上述研究的问题(计量模型)满足基本的假定条件才是可靠的:(1)正态性假设:随机误差项服从正态分布。等价于被解释变量(因变量)在自变量的各水平上服从正态分布;(2)独立性假设,无自相关性假设;(3)同方差性假设;(4)随机误差项与解释变量不相关;(5)零均值假设。这些假定条件在现实经济问题中是很难满足的,而且模型估计是直接对样本负责,而只有样本满足简单随机抽样,才能够较好地描述总体状态特征。我们知道,真正的简单随机抽样也是不容易做到的。因此,我们主张使用计量分析方法也要谨慎,它不是随便就可以使用的,尽管专业的计量分析软件大大简化了计量的运算。
三、本科《计量经济学》课教学理念:理论与应用并重
目前,与过多介绍理论的传统教学方式相比,随着多媒体技术的应用,计量经济学的教学生动了很多,老师也会列举一些例子对所讲授的内容进行说明,但是多数仅限于此,并没有对计量经济学的建模步骤、原理以及模型的局限性等进行深入分析,更谈不上与学生的互动。而且计量经济学方法已经被广泛地用于分析中国现实经济问题,但是实际教学中仍然缺乏包含经典案例的教材。同时,由于授课学时的限制使得目前的计量经济教学中缺少生动的案例分析。
我们既要重视理论方法,也要重视应用模型和应用中实际问题的解决。因此,在课程内容和教学大纲的安排上要强调理论、案例和实验多元化的教学手段,理论教学、实验教学和案例教学应成为当前计量经济学教学缺一不可的内容。尤其是实验教学和案例教学,在教学过程中起着激发学生主观能动性、创新能力的作用,授课教师应根据学生专业(如金融、财政、国际贸易)的不同,安排相应的案例和实验内容,使学生能够很好地将经济理论和计量经济学的实证分析方法结合起来,提高学生对实际经济问题的分析和判断能力。
实验教学是计量经济学教学中不可或缺的一部分,对于培养学生的动手能力是至关重要的。因此,在计量经济学 ……此处隐藏19270个字……的统计部门与人员也没有进行标准的划分和合理的配置,统计报表也没有专业的统计人员进行报送,职员也没有按照相应的统计制度去开展统计工作,进行报表的计算和统计。
二是企业经统计人员缺乏法制理念。在开展统计工作过程中常常会遇到一些法律方面的问题,但是很多企业的统计人员都没有树立正确的法制观念,在统计中常常会为了自身利益,制造一些虚假数据,甚至还有一部分企业为了逃避税收而瞒报一些重要数据,严重影响了数据的真实性和完整性,这样的数据不仅无法得到人们的认可和接受,也会给统计工作带来一些不良影响。
三是相关企业统计人员的整体素质有待提升。目前,很多企业都没有重视起统计工作的重要性,统计人员也缺乏相应的专业知识和统计经验,企业也没有对相关统计人员进行定期培训,造成人员的知识结构和思维模式无法得到及时的更新和优化。而在开展实际工作时,由于统计人员的专业素质和工作水平一直无法得到显着的提升,运用的统计方法也难以符合企业发展要求,统计工作也难以顺利进行,导致企业统计信息不断弱化,也使得企业统计工作无法发挥最大限度的积极作用。
四是企业统计工作手段缺乏创新性。随着信息经济时代的发展,对统计信息的时效性、准确的要求也在不断提高,但是目前很多企业的统计手段都没有得到及时的优化,企业也没有为统计部门配备符合工作要求的办公设备,不仅使统计部门提供的数据的时效性和准确性无法得到应有的保障,也导致企业经济统计工作的质量和效率一直无法取得显着的提高。
同时,还有很多企业没有正确认识到统计工作的积极作用,认为经济统计只是对一些数据进行简单的整理,如数据报表的制作和填写等这种简单的统计工作,造成企业经济统计工作常常缺乏真实和完整性,也有很多企业由于严重缺乏统计方面的人才,也没有设立专门的统计部门,使得很多企业逐渐忽略了统计部门和开展统计工作的重要性。
三、企业经济统计创新的内容分析。
(一)统计思维理念方面的创新。
传统的统计理念早已无法适应信息时代背景下企业的发展需求,因此,企业必须要树立正确的科学发展理念,并将其作为开展企业经济统计工作的重要理论依据,而我们也必须要正视经济统计工作中的种种问题,并分析总结出问题的成因,通过定期的专业培训,使统计人员的专业素质和统计水平得到不断提升,还要制定出一套完整的工作规范,并要求统计人员严格按照制度规范开展统计工作,同时还要根据实际统计工作情况,建立其合理的奖惩机制,从而充分调动起统计人员工作的积极性和责任心,多为职员提供学习和实践的机会,促进统计人员的全面发展,也确保统计工作能够顺利进行。
(二)统计内容方面的创新。
统计内容方面的创新,主要体现在企业活动条件、企业投入和产出统计等方面的基本内容的补充和拓展,同时还要将一些已经过时的、没有实质价值的原始凭证,以及一些与实际情况不符的数据,进行适当的取舍,同时还要将信息化、网络化的企业虚拟运作统计真实的呈现出来,使统计人员的工作创造力得到充分的发挥,也将人本主义的企业文化统计充分反映出来。
(三)统计功能和方法方面的创新。
企业经济统计方面的创新主要体现在完整的企业统计指标体系的建立。评价功能的创新,其功能主要是对企业生产经营过程进行详细分析和评估,并且能够为企业的发展战略和重要决策的制定提供更加精准的判断标准与评估数据,其积极作用主要体现在企业生产经营活动过程中。分析功能的创新,主要是指企业经济统计人员能够利用先进的统计软件,以及科学有效的统计手段,对企业经济的发展现状和未来的发展趋势进行合理的分析和评估。而企业统计方法的创新则要求统计人员,要充分整合先进的科学技术,如:信息技术、网络技术等,通过这些技术的应用,使统计工作质量和效率能够得到不断的提高,不断完善企业业务流程,提升企业核心竞争力。
(四)统计人员管理方面的创新。
对于企业经济统计人员的管理,要不断结合企业的实际发展状况,设置出能够被更多统计人员所接受和认可的管理机制,从而更好的适应现代化企业发展的实际要求,同时也要为人员提供更多实践学习的机会,并对其进行定期培训,从而使其能够及时的掌握最新的统计理念和手段,知识结构和统计水平也得到不断的优化和提高,同时也要给予统计人员更多展示自己的平台,使其自身的优势和潜力能够得到充分的体现和发倔,并探索和创新出更多科学有效的统计手段。
经济统计是一项复杂的工作,对企业和社会经济的发展有着重要意义,必须给予充分的重视。但是目前很多企业开展的经济统计工作还存在一些有待解决的问题,使得统计工作质量和效率也无法得到显着的提升。因此,统计人员必须要深入分析和总结不同阶段统计工作中的问题,采取有效的解决对策,实行创新性统计,从而使经济统计工作的适应性和灵活性得到不断的提升,从而更好地为企业发展服务,提升企业的竞争力。
引 言 篇十当前正在持续并不断延伸的经济危机,引发了学术界对于标准经济学建模方法在此次危机预测与应对中作用的探讨,其矛头直指计量经济学,认为计量经济学在经济现实表述与预测方面作用甚微,一些极端观点甚至要求放弃计量经济学模型方法,因之引发当前学术界关于计量经济学“失败与否”的学术之争。争论的实质可归结为一个问题:计量经济学是否是精确、无局限的绝对科学?
对于计量科学的精确性、绝对性的探讨由来已久,当前学术界的争论只是对这一问题的深化。早在1939年,Keynes就指出计量经济学模型方法存在三个层面的问题:一是理论的先验正确性问题,二是线性假设以及滞后期与趋势决定的主观随意性问题,
正如凯恩斯所说,计量经济学模型设定基本是以线性假定为前提的,Juselius在谈及VAR类模型的局限时,也提起过VAR类模型的设定是线性的,因此其对于跨越多个时期的模型预测并不十分理想。
国内学界对计量经济学基本持肯定态度,李子奈认为,从计量经济学模型方法的建立、估计与检验过程来说,其方法具有坚实的统计、逻辑基础,符合科学研究的发现过程。计量经济学研究方法实质上就是回归分析,是证实与证伪、归纳与演绎、检验与发现、相对与绝对相结合的过程。并探讨了计量经济学模型政策评价、结构分析、预测与检验功能上的局限。
李子奈在他的“计量经济学方法论的若干问题”,“计量经济学模型的功能与局限”中均有提到这一观点。洪永淼认为计量经济学模型面临三个主要问题:非重要因素的影响问题、观测数据问题以及样本外预测问题。但计量经济学理论本身已经发展得相对成熟与全面,只是由于经济系统的时变性、不可逆性以及经济数据的缺陷导致了计量经济学的分析、预测没有物理学那样精确,这也是计量经济学与自然科学最大的区别。
那么计量经济学究竟是怎样的科学?它是否具有其自身难以避免的不足与局限?要对这一问题进行解答,就要从其模型方法的概率和统计学科基础进行探讨,从其表述语言、方法论及功用层面进行基础研究,以提高其应用研究的科学性,使计量经济学应用研究沿着正确的方向发展,这也正是本文的研究目的。
你也可以在搜索更多本站小编为你整理的其他计量经济学的论文【多篇】范文。